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Contour dynamical methods are being applied to a variety of inviscid incompressible flows
in two dimensions. These generalizations of the “waterbag” method provide simplified models
for following the evolution of contours x” that separate regions of constant density which are
the sources of the flow. The inviscid evolution of contour j, ¢’ is usually an area-preserving
map. For physically unstable problems, a piecewise-constant initial condition may result in an
ill-posed problem. That is, contours may rapidly grow in perimeter and/or develop
singularities and numerically induced small-scale structures in a finite time. To avoid such
problems and model realistic weakly dissipative or weakly dispersive flows, contour
regularization procedures are required. Dissipative and dispersive tangential regularization
procedures for one contour are introduced. A special case of the former, namely x,=ux,,,
corresponds in lowest order to a linear diffusion operator in two dimensions. The contour is
parameterized with arc length using cubic splines and an adaptive curvature controlled node
adjustment algorithm is used. A modified Crank—Nicolson method is used to solve the
discrete representation of the full system, x, =%, + ux . Numerical results are given for the
evolution of initially elliptical shapes according to prescribed area-preserving maps. The
numerical results for area evolution agree with analytical results.

1. INTRODUCTION

1.1. Survey of Developments

Recently, there has been a renewed interest in computational studies of the
evolution of ideal of nondissipative flows in two dimensions. Longuet—Higgins and
Cokelet [1, 2] have studied incompressible shallow and deep water waves on boun-
daries between regions where density is piecewise-constant. Baker et al. have also
considered this problem [3] as well as the Rayleigh-Taylor problem of a heavier
fluid above a lighter fluid [4]. Zabusky and his associates [5—8] have investigated the
Euler equations with piecewise-constant vorticity distributions. Finally, Overman and
co-workers [9, 10] have been studying the evolution of weakly ionized and strongly
magnetized ionospheric plasma clouds in an electric field with a piecewise-constant
ion density model.

In all these cases, one is dealing with the evolution of curves in two space
dimensions that separate regions of constant density. Because the densities are

351

0021-9991/83 $3.00

Copyright © 1983 by Academic Press, Inc.
All rights of reproduction in any form reserved.



352 ZABUSKY AND OVERMAN

discontinuous, there are no existence theorems for many of these flows and we have
no assurance that initially smooth contours remain smooth for all times. For
example, we have found contours with corners that are steady solutions of the Euler
equations with piecewise-constant vorticity [11]. Furthermore, we have
computational evidence that the ionospheric plasma problem is ill-posed. That is,
contours rapidly develop regions of small-scale oscillatory numerical structure. This
structure appears sooner if the resolution is increased, a classical manifestation of the
numerical resolution of singularities. The goal of the present study is to introduce a
rational and robust tangential regularization (or smoothing) procedure that represents
aspects of true dissipative or dispersive processes on each contour. These processes
can inhibit the development of singularities on contours. Thus, we shall be able to
calculate approximate solutions beyond small times.

Regularization, smoothing, or “cutoff” methods are well known in science and
engineering. They are often introduced in an ad-hoc way when a discipline is evolving
rapidly. They are needed because some asymptotic approximation to a realistic (i.e.,
well-posed) problem omits terms or parameters from the equations of motion or
restructures the initial conditions in order to render the problem analytically or
computationally tractable. The omission or restructuring may lead to ill-posed or
unstable evolutionary problems. For example, Longuet-Higgins and Cokelet [1]
observed a high wave-number instability arise as their smooth wave propagated. They
removed this structure with a five-point smoothing (or filtering) procedure that was
used every few time steps. Baker ef al. [3] claim to have found a “dipole” procedure
that delays the onset of the instabiltiy. Thus, regularization procedures are models of
realistic systems, and thereby enlarge the parameter space in which approximate
solutions are obtained. We shall show how tangential dissipative regularization
embodies one essential feature of two-dimensional diffusion, namely, the decay of
small-wavelength contour perturbations.

1.2. Regularization Concepts for One- and Two-Dimensional Flows

A cogent example of regularization is provided by Burgers’ equation

U+ U, =vu,,, u(x, 0) = uy(x), -0 < x < 400, (1.1)

an ideal model of one-dimensional pressureless hydrodynamics, where v> 0 is a
constant viscous parameter. For bounded and smooth #,(x), (1.1) has unique
solutions and bounded derivatives for all times [12, 13]. However, if one “simplifies”
the problem by setting v = 0, the resulting Euler equation has the general solution

u(x9 )= uy(x — u(x’ 1) 1),

and derivatives of u become singular at a time ¢, =|min uj}|~'. Thus, for v > 0,
characteristics are “prevented” from crossing.
Similarly, for computational studies of shock-wave problems in one dimension with
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negligibly small “true” viscosity, Richtmyer and von Neumann [14, 15] advocated
the addition of a small-but-finite artificial or pseudononlinear viscosity to regularize
the problem. In essence, they replaced the pressure p by p + g, where

g = (m)(u,)’ if u,<0,

1.2
=0 if u,>0, (1.2)

has units of (L/T)? and vt is proportional to the fluid density p/p,. They applied this
regularization procedure to numerical solutions of one-dimensional compressible gas
dynamics and verified that, for small shock thickness, the variation in dependent
variables across the transition layer agrees with the jump relations obtained from
Hugoniot theory. In recent years, linear higher-order dissipative processes [15] have
been used in fluid dynamical simulations in one and two dimensions, e.g.,
q = ("*u,,,) replaces (vu,).

For two-dimensional nearly inviscid incompressible fluids the problem is more
complicated. There are no steady-state solutions, corresponding to the Hugoniot
relations, with which to make validating comparisons. For example, the vorticity-
stream function form of the incompressible Navier—Stokes equations

W+ y,0,—y,0,=vA0, Ay =—-w (1.3)

(where w(x, ¥, 0) = wy(x, y)) have been used to study 2D fluid turbulence {17, 18].

For the Euler equations, obtained with v=0, all isovorticity contours are
convected with the flow (Helmholtz’s theorem). Zabusky et al. [5 — 8] have further
idealized the inviscid problem by assuming w, is a piecewise-constant function.
Hence, w remains piecewise-constant and the problem is reduced to the self-consistent
interaction of contours that separate regions of constant w. If wg(x, y) is Holder
continuous and in a bounded domain, then w remains Holder continuous and velocity
gradients are bounded for all times [17].

If v is finite we know that (1) if w, is piecewise-constant or smoother, regular
solution exist for any finite time [17]; (2) the integrals of w" (n even) of isolated
vortex distributions of one sign decrease monotonically in time; and (3) topology
changes may occur, that is, isovorticity lines may reconnect.

For example, topology changes may occur after the shear (Kelvin-Helmholtz)
instability has greatly disturbed a weakly perturbed set of isovorticity lines. See frame
a (t=0) of Fig. 1 (which is Fig. 8 of Zabusky and Deem [19]) which shows isovor-
ticity contours (positive contours are solid and negative are dashed of a simulation
with Re = 750 on a 1282 grid with the flow confined near the center. As the process
evolves, the isovorticity lines elongate and approach each other in certain regions.
The strong vorticity gradients increase dissipation locally which manifests itself in
contour pinching and rapid disappearance of long sharp (high-curvature) filaments.
(see (f) in frames b and e.) In frame f we are left with several isolated rounded
regions of vorticity. The region marked “secondary” in frame f arises from the
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FiG. 1. Evolution of constant vorticity contours (9 levels) for a perturbed Gaussian profile that
models a wake. (This is an augmented version of Fig. 8 in Ref. [19].)

entrainment of opposite-signed vorticity, which we follow in the figure with the
asterisked arrows.

In Section 2.1 we derive higher-order dissipative and dispersive regularization
procedures which inhibit the formation of contour singularities. The simplest
dissipative algorithm includes terms in the evolution equations containing second
partial derivatives with respect to arc length (proportional to local curvature). This
causes the area and perimeter to decrease, the latter mainly in sharp regions of large
curvature. In Section 2.2 we show how this procedure corresponds, in lowest order,
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with the solution of the two-dimensional problem w,=vdw for special initial
conditions. In Section 3.1 we describe algorithms for discretizing the continuum
representation of Section 2. In Section 3.2 we include a robust curvature controlled
adaptive algorithm for node-insertion-and-removal which maintains the product of
(density-of-nodes) times (local curvature) to within a narrow range. In essence, the
contour is parameterized by discrete nodes whose density as a function of arc length
varies (adapts) inversely proportional to the local curvature. In Section 4 we present
numerical results. In the concluding section we discuss concepts for multicontour
regularization, a procedure necessary to obtain solutions at intermediate times. We
shall consider, at another time, the contour reconnection problem associated with
merging regions and pinching filaments.

2. CoNTINUUM THEORY OF REGULARIZATION

2.1. Tangential Regularization

The contours evolving in the plane are parameterized by o and . We parameterize
contours both by the location of nodes in the plane

x = (x(t, 0), ¥(t, 0)), (2.1)
and by arc length derivative and local tangent angle (g(z, 0), (1, 0)), where
g=s,= [x; +»;]"" (2.2)

In the latter case, we also require the location of a point on the contour.
If we take the time derivative of (2.2) we obtain

g, =X,,co8 ¢ +y,sind, 2.3)
where
cosg=x,/g=x,, sing=y,/g=y,. (2.4)
If we differentiate tan ¢ = y/x with respect to time and simplify, we obtain

g¢t = —-xot Sin ¢ + yot Cos ¢ (25)
Thus, there is a unitary transformation between the two representations (x,,»,); S
(&> 8¢,), where

cos ¢ sin ¢ > 2.6)

*gs Yo) = (8> 88) U= (8,5 89.) ( —sing  cos ¢

The curvature x is given by

KE¢s=¢a/sa= (xa yaa_yoxaa)/(xz-'}-yg)a/z’ (27)
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where

2

)

Assume that the evolution equations can be written as a sum of two terms

(8 9)=(£9),+ (G ), (2.9)

" dg = 2m. (2.8)

or

(%, y)t'= (% ﬁ)t + &, Y), (2.10)

where (£, 9), or (£, /), represent convective, usually area-preserving, terms and (G, @)
or (X, Y) are the dissipative and/or dispersive regularization terms we are seeking.
For example, for the Euler equations, (¥, ))), is obtained from by integrating around
contours 6D, that separate piecewise-constant regions of vorticity [5], or

%= (%)= 00" 3 [o];] log r(d dn)
J D;
where r2 = (x - é)z + (y - '7)2 and [w]j = Wj outside — Wj,inside*
We now differentiate (2.10) with respect to o and substitute (2.6) to obtain

(X,,Y,)=(G,g®) U. (2.11)

We now require that the right side of (2.11) be perfect derivatives of 6. Hence, if
X=F cos¢p—F sing and Y= sing + ¥ cos ¢, (2.12)
then for consistency
G=F_,—¢,%, {2.13a)
and
gP=2 +F9¢,. (2.13b)
We simplify possibilities by setting .# =0 and find
G=—¢,% (2.14a)
and
=2, (2.14b)

The contour evolution equations become

(8 9),=(§ 6)1 + (—gx¥, ‘?;) (2.15)
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or
(x, »),= (X)), + £ (—sin ¢, cos ¢). (2.16)

For processes which are dissipative (i.e., where contours become rounded, shrink, and
vanish in time) we take & = &, where

Si=mlel "k (2.17)

For processes which are dispersive (such as surface tension where interfaces persist
and oscillate in time) we take ¥ = %, where

% =2, (k| k). (2.18)

If p and g are >1, we have nonlinear coefficients of dissipative and dispersive
regularization in (2.17) and (2.18), respectively. The former is analogous to the
nonlinear viscosity introduced by von Neumann and Richtmyer [14]. For example, if
4,=0 and p= 1, we obtain

¢t=¢;t+:u1¢ss and gtzgt_ﬂlgxz’ (2-19)
or
(5, 2) = (£, 9), + u1(Xs5 Vs)- (2.20)
The last follows because
—K sin ¢ = —¢_ sin ¢ = (cos @), = X,

and similarly k cos ¢ = y,,. These equations are intrinsically nonlinear, for they are
coupled through arc-length derivatives, e.g., d,=g 'd,. Equation (2.20) with
(%,7),=0 has been described by Brakke as the evolution of a curve by its “mean
curvature,” a concept which is generalizable to the evolution of surfaces in higher
dimensions [20].

An alternate and concise view of these motions is obtained by examining the
evolution of curvature,

. K, =(0,/8) =8 @) — & & (2.21)

K= ((6t)s - Kg_lgt) + (‘?;s + sz),

where J, and g, are defined in (2.9). For dissipative regularization (p =1)
K= (6 4 K) and (Ing), = —u,x’ (2.22)
and for dispersive regularization (g=1)

K=tk + k) and  (Ing), = —(u,/2)(K*);. (2.23)
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Equation (2.23) is the modified Korteweg—de Vries equation which supports soliton
solutions [21]. The leading term in (2.22) may seem paradoxical, but it follows from
the decrease in perimeter (or radius) due to regularization. That is, if we start with a
circle, then x =0 and

Kk =Kg?—2u,t or  ri=ri—2u,t (2.24)

The last relation is not unexpected, for it arises in the argument of the Green’s
function for two-dimensional linear parabolic equations.

We now examine the evolution of the perimeter P=¢ds and the area
A =—4¢ydx=—{§yx, do. The rate of change of perimeter

P,=§gtda=ﬁ,—§xfds=ﬁ,—plfﬁ|x|”“ ds—,uzéx(aslxl""‘x)ds, (2.25)

where the dispersive term vanishes identically, when g is odd and > 0. Thus, with
dissipative regularization, regions of large curvature cause the main decrease in
perimeter. The time rate-of-change of area is

At = —J (ypxa +yx0t) do ='[ (—y'xa + X, ya) dO', (2263.)
- - 2n
=A'_f£?ds=At—ﬂ1f k|7~ dg, (2.26b)
0

where A, results from the convective part of the map and (2.26b) results after
substituting ¥ =%, + %,. Note that dispersive regularization does not affect area
invariance. Note also for p=1and 4,=0

Y

P=P - MQKZ ds (2.27a)
and

A,=2mu,, (2.27b)
where (2.27b) is consistent with (2.24). Brakke also shows that the total curvature,

$sp|x|ds, is monotone decreasing for each € [0,7,] [20, AppendixB,
Proposition 2]. If p > 1 the perimeter and area will decrease more rapidly.

2.2. Tangential Regularization and 2D Diffusion

For initial value problems the 2D diffusion equation

w,=vAw (2.28)

acts to decrease (or spread) steep gradients and to smooth small-scale oscillatory
perturbations of an initial state. Obviously a one-contour model cannot deal with the
first phenomenon. We discuss multicontour representations in Sections 5. We now
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clarify the correspondence between (2.28) and dissipative tangential regularization
(F =0 and ¥ =ux) by examining the evolution two piecewise-constant initial
conditions. First we consider

I(t=0)={(x,y)|y =€ cos mx}, 0<e<l, m=0("'? (2.29)
for contour dynamics and

w(x,y,0)=1 if y <ecosmx,

(2.30)
=0 if y>ecosmx,
for (2.28). In Appendix A we show that (2.29) becomes
I(¢) = {(x,y) |y = ee ™" cos mx + O(e*/*)}. (2.31)

When (2.30) evolves w does not remain piecewise-constant, but it is very steep for a
time. To compare (2.31) with the solution of (2.28) and (2.30), we examine the line
J(x, t) defined by

wx, 7, t)=310 (2.32)
and obtain
P(x, £) = ee ™" cos mx + O(e*'?), (2.33)

as shown in Appendix A.
For our second example we consider the analogous perturbed-circle initial con-
ditions

I(t=0)={(r,0)|r=ro+ecosmf), 0<e<l m=0(""?) (2.34)
for contour dynamics, and

o(r,b,t=0)=1 if r<ry+ecosmb,

=0 if r>ry,+ecosmb, (2.33)
for (2.28). Similarly, one can show that
I(t)={(r, 8) | r=r, — ut/ry + ce ™" cos md + O(e*/?)} (2.36)
for contour dynamics and
(B, t) = ry — vi/ry + ee "™ cos mf + O(*2), (2.37)

for (2.24), where 7(6, t) is the line defined by

w(f, 8,1)=10. (2.38)
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Thus, if g=v both forms agree to lowest order for the evolution of small-
wavelength terms. These results elucidate (2.27a). That is, large-x fluctuations
contribute to a rapid decrease in perimeter. The contour contraction in (2.37) is not
surprising, because the maximum of w(x, y, ) is decaying and eventually all finite
height contours of w vanish.

3. DISCRETIZATION AND EVOLUTION OF REGULARIZED CONTOURS

3.1. Discretization of Tangential Dissipative Regularization

We first discuss procedures for approximating a contour by periodic cubic splines
(PCS), as shown in Fig. 2. Details are given in Appendix B. This procedure includes
a node-adjustment algorithm which is discussed in the next section. The time advan-
cement of each node is done with an implicit predictor and an implicit corrector
which both require the inversion of periodic tridiagonal matrices. For convenience we
let X, =X in this section.

At any time, the contour is represented by the set of nodes {(x;,y;)|1<j< N},
where (xy,,,Vy.1) = (x;,¥;). The complete contour is determined in two steps, as
described in detail in Appendix B. First, we obtain a contour I~ which passes through
all the nodes and which is parameterized by the straight-line distance between
adjacent nodes, /. Thus, I"= {(£(/), 7())}, where ¥ and j are periodic cubic splines.

Xi x(s) YES Ki K(s) (as)
% CONTOUR X J k
A GENERATOR g N =2
A NODE
ADJUST ADJUSTER
NODES
'y A
PREDICTOR
*xjlt+at)
- x(s) 2 x(s") XK s
L 4 X 2 conTour R.% +
(x+X) OR GENERATOR T(x(s)]
DERIVATIVE
CALCULATOR

CORRECTOR

o contoun L, ‘li’f Q) .Sj ’T ER)
GENERATOR
(STRAIGHT

LINE)
I<jsN I<sjsN

Fic. 2. Flowchart for contour calculation including node adjustment. Note, here and in Section 3,
that x = X,.
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Next, we calculate the arc length between adjacent nodes on I using an adaptive
quadrature rule which yields results with a prescribed accuracy and obtain the
desired contour I" = {{x(s), ¥(s))}.

If we define the central-difference operator

5xj =X(8;11/2) — X(5;_1/2)s

with a similar expression for dy; and ds;=s;,,,, —§;, 2, then the second derivative
X, is discretized as

Dy(x,s)= 2(5j+1 - Sj—l)_l[(‘st 1/2/55j+ 12) — (5",'—1/2/531'— )] (3.1)
In the continuum limit (3.1) becomes
D(x, 8) =X+ $[65;, 12— I5;_12] X + 751(355.41/2)°
— (0574 1/2)(08; 2 112) + (05;_112)* ] X555 + O((55)), (3.2)
and we observe that the algorithm is first order if ds;_,,, # Js;,,/,,. A similar result
holds for y,,.

We advance (2.20) with a predictor and one (or more) correctors. That is, for x in
(2.20) we obtain the predicted *x7*' from

(FxtH1 — xM)/At = 21 4 uD,(*¥x" V2, 5", (3.3)

J

where the superscript # designates the time level, and define
2 _
*xf T2 = 10 4 X)), (3.4)

where i," is the contribution resulting from discretizing x = X,. Equation (3.3) with
(3.4) is a generalization of the Crank-Nicolson method. Since D; is linear in *x}*!
we can combine it with the left side and obtain a periodic tridiagonal matrix in
*x7*!. To obtain a higher-order scheme, one could replace (3.1) with differences
based on five adjacent nodes and one would have to invert a periodic five-diagonal
matrix. Similarly,

Ciyp = y)fdr = J + uD,(Fy" 12, 57, (3.5)

The corrector formula is

Gep+t = X)) At = *RIH V2 4 D (2, *sm Y, (3.6)
where
XEPTVI = L(6E T 4+ 2D,
XTHVZ = L(emed g ), 3.7
and

keond1/2 _ degen+l n
s] =3(*s7 + 7).

581/52/2-10
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That is, the arc length *s7'*' and the convective time evolution *)?}'“ are computed

using the predicted nodes (*x]*!, *y7*'). The formulas used in the program are
written in matrix form as

[14a™])(x"*") = de(Z™) + [1 — a™](x"), (3.8)

where a™ is cyclic tridiagonal matrix with elements
@) jo1=—1 AH(Bs] 1), + 551""+ 1/2)71(55;'"— )~ g
(@) 51 = —0AUDST 3 + OS] 112) (08741 /2) 7 (3.9)
(@) ;=—@"); ;-1 —(@"); 41

and where m = n for the predictor and m = n + 3 for the corrector.

3.2. Curvature-Controlled Node Adjustment Algorithm

For area-preserving maps the perimeter may grow indefinitely if instabilities or
nonlinear filamentation processes are present. Thus, to control the growth of trun-
cation errors and to minimize computation, we insert, remove, and adjust nodes
according to the magnitude of the local curvature of I' after an a priori prescribed

i 1 ] 1‘“119 i inmmm.u.e_

9 H

fit to the curvature calculated from the periodic cubic spline representation of
{(x(s), ¥(s))}. First, we divide the curve into segments in which the curvature varies
monotonically. In each segment we adjust the nodal intervals to satisfy certain
constraints where we begin at the end which has the larger |x| and march to the other
end. We attempt to set the new internodal distance, A, =s,,, —5;, at 5, to

hi = c /|k(s,); (3.10)

but we require that 4} satisfy two constraints:
hmax>hlzk>hmin’ (311)
and

(A=rh,_ <hF<Q+r)h_,. (3.12)

The upper limit 4, guarantees a minimal a priori accuracy, which, for example,
is necessary for solving problems where the advective velocity (X), is obtained from
the solution of an integral equation |9, 10]. The lower limit guarantees a maximum
accuracy and also prevents the number of nodes from growing too rapidly. The value

of A, depends upon g (which determines a true scale size). Equation (3.12) controls
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the ratio of adjacent internodal distances. Hence, if h} lies within the range
[Amaxs Pmin]> OUr algorithm is

h.=h¥ if hFsQ+r)h,_,,
hy=(1xr)h_, if hFzZ(tr)h_,.

The parameter r is 0.3 in all the runs in this paper. (In recent studies of the Euler
equations [8], we have found that if (3.10) is replaced by h} = c,/|k(S,)’, where
0.25 < ff < 0.4, then more accurate results are obtained.)

The order in which the segments are adjusted depends on the maximum |x| in each
segment. The algorithm begins with the segments with the largest maximum |x| and
ends with the segments with the smallest. (There are always at least two segments
with the same maximum |x|.) This guarantees that the regions of large curvature (i.e.,
small-scale structures) are well resolved, which is the primary aim of the algorithm.
However, it does not guarantee that the ratio of internodal distances will satisfy
(3.12) at the boundaries between segments. Thus, some segments may have to be
redone—but generally not more than 2 times. Note that the use of segments is
essential in contours where narrow regions of large curvature develop, as shown in
Fig. 3, because it avoids the problem of readjusting nodes in the vicinity of these
narrow large-curvature regions or of “skipping-over” them. Note that the selection of
parameters c,, k.., and A, depends both on u and on the accuracy of the method
of calculating the inviscid component of the advective velocity, x.

After all segments have been adjusted, we have the locations of the desired nodes
{si | 1 <k <N}, where N is the new number of nodes. Using the periodic cubic
spline representations for I', we obtain the location of the new nodes {(x(s{ ), ¥(s)) ]|
1< k< N}

or (3.13)

4. DIScUSSION OF NUMERICAL COMPUTATIONS

In this section we present computations which illustrate properties of dissipative
tangential regularization with node adjustment. In each case we begin with an ellipse
and for our advective flows X, we use three area-preserving maps:

(1) translation,

(%, )= (v, v,)s (4.1a)

et —
"1 20.0,1.0,4.0 "1 20.0,1.0.4.0

FiG. 3. Graphs of (a) 1:0.25 ellipse described in Tabie Ia and (b) 1:0.125 ellipse described in
Table Ic at times, 0, 1, 4, both in a rotating frame of reference.
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(2) rotation,
(x",)')‘)tz.()o(—y,x); (4.1b)

and
(3) differential rotation,

(xA’ﬁ)t='Qo(_y7x) if 0<r<r0

(4.1¢c)
E‘Qo(ro/r)z(_y9x) if r>rg,

where r = (x* + ?)"/%. In the above v,, v,, 2,, and r, are constants.

The predictor-corrector algorithm, described in Section 3.1, was used with
At =0.01 or 0.02 and a node adjustment was done every 0.20 units of time.

The quality of the runs is seen by comparing the number of nodes N, the area 4,
the perimeter P, and the maximum and minimum curvatures k,, and x_;, (as
described in Appendix B) as a function of time. The true area 4,, = A(0) — 2mut (see
(2.27b)) is also given along with the relative error in the area, ¢, = (A, — A um)/A+te-
We compute the area 4,,,, by applying the adaptive integration routine, described in
Appendix B, to A4 =— § ydx, where the line integral is over the contour. (The
relative error is 10~° and the absolute error is 107%.)

The initial conditions for advections (4.1a) and (4.1b) were ellipses with major-
axis: minor-axis of 1:0.25 and 1:0.125. Results are given, respectively, in Tables Ia
and Ic for the former (where ¢, =0.03, A, =0.001, A_,, = 0.03, and N(0)= 283
and 271) and Tables Ib and Id for the latter (where ¢, =0.01, A, = 0.00025,
hyax = 0.01, and N(0) =831 and 843). The two discretizations were used to assess
truncation errors. Note that the precise value of N(0) was chosen by the node

TABLE Ia
The Evolution of a 1: 0.25 Rotating Ellipse with 2, = 1.0 (rad/sec)
and # = 0.002*

t N P A(r €4 Kmax Kmin
0.0 283 4.2892 0.78540 0 16.01 0.2500
0.2 282 4.2717 0.78289 0 14.23 0.2503
0.4 280 4.2550 0.78037 —-1.3 13.27 0.2505
0.6 280 4.2388 0.77786 —1.3 12.64 0.2508
0.8 280 4.2229 0.77535 —1.3 12.14 0.2511
1.0 280 4.2075 0.77283 —2.6 11.74 0.2514
2.0 278 4.1338 0.76027 —2.6 10.47 0.2529
3.0 276 4.0645 0.74770 —5.3 9.73 0.2545
4.0 274 3.9980 0.73514 —6.8 9.22 0.2561

2 Single precision, 4t = 0.02; h,,;, = 0.001 and A, = 0.03.
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TABLE Ib
The Evolution of a 1: 0.25 Rotating Ellipse with £2,= 1.0 (rad/sec)
and x = 0.002°

! N 3 Ay €4 Kmax Kmin
0.0 831 4.2892 0.78540 0 16.00  0.2500
0.2 831 4.2717 0.78289 0 14.21  0.2503
0.4 828 4.2550 0.78037 0 13.27  0.2506
0.6 828 4.2388 0.77786 0 12.62  0.2509
0.8 827 4.2230 0.77535 0 1213 0.2512
1.0 826 4.2075 0.77283 0 11.74  0.2515
2.0 821 4.1338 0.760217 0 10.47 0.2530
3.0 815 4.0644 0.74770 0 9.73 0.2545
4.0 808 3.9978 0.73514 0 9.22 0.2561

* The resolution is increased fourfold from Table Ia. Double precision,

A4t =0.01; h,;, = 0.00025 and h,,, =0.01.
TABLE Ic
The evolution of a 1: 0.125 Rotating Ellipse with 2, = 1.0 (rad/sec)
and u = 0.002¢
t N P Atr €4 Kmax Kmin
0.0 271 4.0931 0.39270 0 64.19  0.1250
0.2 297 4.0377 0.39019 —2.6 37.47  0.1251
04 304 3.9917 0.38767 —5.2 3253 0.1253
0.6 306 3.9499 0.38516 -1.8 29.31  0.1254
0.8 305 3.9107 0.38265 -7.8 27.57  0.1256
1.0 303 3.8735 0.38013 -13.2 2544 0.1257
2.0 297 3.7056 0.36757 -19.0 21.29  0.1263
3.0 292 3.5554 0.35500 —28.2 19.25  0.1273
4.0 288 3.4159 0.34243 -35.0 17.94  0.1282

“ Single precision, 4¢ = 0.02; h,,,=0.001 and A, = 0.03.

adjustment algorithm, as determined by (3.10), (3.11), and (3.13). The small-N
calculations were made in single precision (8 significant figures on the University of
Pittsburgh DEC-10). To avoid small amplitude-and-wavelength numerical curvature
oscillations, the large-N runs were made in double precision. The effect of the higher
resolution can be seen in «,,(0) which should be 16.0 and 64.0 for the 1:(}) or
1: (3) ellipses, respectively.

For uniform translation (4.1a), our algorithm was studied, without loss of
generality, with v, = v, =0. For uniform rotation (4.1b), we set £2,=1 radian per
unit time and obtained nearly identical results and so we discuss only the latter. As
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TABLE Id
The evolution of a 1: 0.125 Rotating Ellipse with 2, = 1.0 (rad/sec)
and ¢ = 0.002°

t N P Atr €4 Kmax Kmin
0.0 843 4.0931 0.39270 0 64.05  0.1250
0.2 898 4.0376 0.39019 0 36.69  0.1251
0.4 898 3.9914 0.38767 0 3146  0.1253
0.6 898 3.9494 0.38516 0 28.59  0.1254
0.8 894 3.9102 0.38265 0 26.67  0.1256
1.0 892 3.8730 0.38013 -2.6 25.25  0.1258
2.0 879 3.7048 0.36757 -2.7 21.25  0.1265
30 867 3.5545 0.35500 -2.8 19.21  0.1273
4.0 853 3.4148 0.34243 -5.8 17.91 0.1282

9 The resolution is increased fourfold from Table Ic. Double precision,
4t =0.01; h,;, = 0.00025 and A,,, = 0.01.

max

time evolved we observed a rapid initial decrease in curvature followed by a slower
decrease. Thus, for the 1:; ellipse, where A¢=0.02, the maximum curvature
decreased by 26% between 0 < ¢ < 1.0 while it decreased by 16% in 1.0 <t < 4.0.
Also the number of points slowly decreases with time. Note that Tables Ia and Ib are
nearly identical and that the effect of the higher resolution can be seen in ¢, which is,
in fact, zero to 5 significant digits in Table Ib. For the 1: (3) ellipse, where At = 0.02
for the low-resolution run and 4¢ = 0.01 for the high-resolution run, the situation is
more complicated. The curvature did again decrease—by 40% in 0 ¢ < 1.0 and
12% in 1.0 € £ < 4.0 but the number of nodes increased initially. The reason lies in
the observation that although the curvature is decreasing in time in a very smail
neighborhood of the tip, there are nearby regions of smaller (but still large) curvature
where the curvature is increasing in time initially. The competition between these
processes results in an initial rapid increase in N from 843 to 898. This competition
in fact, leads to the appearance of spurious maxima 0.0006 units from the tip when
At =0.02, We are certain that these new maxima were due to the larger time step and
not the node distribution. Our evidence is that they disappeared when we set
4t =0.01 and 0.005, but did not disappear (and were resolved very well) when we
kept 4t = 0.02, increased the number of points near the tip, and turned off the node-
adjustment algorithm.

The third advective flow (4.1¢) (with ry=1 and 2, = 1) provides a simple model
of the breaking-and-filamentation behavior of linearly unstable isolated vortices. We
compare two runs without and with regularization, Table Ila (with x=0.0) and
Table IIb (with u = 0.002), respectively. The initial contour is a 1:} ellipse with
N(0) =220 nodes (¢, =0.025, h,,,=0.01, and h_,, =0.025). TableIla shows a
much more rapid growth in curvature than Table IIb. The former run terminated at
t=4.60 when the number of nodes demanded by the node-insertion algorithm
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TABLE Ila

The Evolution of a 1:0.25 Ellipse with Differential Rotation and 2,= 1.0,
ro=1/2, and y =0.0.%

t N p Atr EA Kmax xmin
0.0 220 4.28920 0.78537 0 16.56 0.250
1.0 341 4.98618 0.78537 7.6 2175 ~154.0
2.0 412 6.50500 0.78537 14.1 45.57 ~202.0
3.0 479 8.28297 0.78537 16.6 102.8 -201.0
4.0 582 10.16042 0.78537 16.6 214.0 -231.0

¢ Single precision, 4¢ = 0.02; h,, = 0.01 and h_,, = 0.025.
TABLE 1Ib
The Evolution of a 1:0.25 Ellipse with Differential Rotation
and 2 = 1.0, r, = 1/2, and 4 = 0.002¢

t N P Atr CA Kmnx Kmln
0.0 220 4.28920 0.78537 0 16.56 0.250
1N aANA A oNnLNnn n 11MT70 o IV 4 1£ N1 1 Ne
5.0 636 9.60453 0.72254 -29.1 53.75 —13.01
6.0 716 10.61442 0.70997 —46.5 62.34 —12.34
7.0 791 11.49434 0.69741 —66.0 71.19 —11.88
8.0 887 12.32767 0.68484 -94.9 80.92 —11.57

“ Single precision, 4¢t = 0.02; h,,;,, = 0.01 and &,,,, = 0.025.

exceeded 900. The strange (increasing-decreasing) behavior of ¢, in Table Ila is due
to the large-rapid fluctuations in curvature which develop in this unregularized run,
as shown in Fig. 4c.

In Figs.4a and 4b we present contour plots corresponding to the results in
Tables Ila and IIb, respectively. In Figs. 4c and 4d we show curvature « vs arc length
corresponding to Figs. 4a and 4b. (Note, the ordinate varies geometrically.) The
unregularized contour develops large values of |k|, O(10%), that fluctuate rapidly over
very short intervals near “corners.” (For graphical convenience, curvature values are
not plotted if |x| > 102%.)

The regularized contour shows a smooth growth in perimeter and a contraction in
width of the filamentary arms. For convenience, we track three points in Figs. 4b and
4d with @, *, *. The @ is the location of the reference node for arc length, s =0. (s
increases counterclockwise.) Note at ¢ = 8 the curvature at s =0 is <0. The * is the
location of the one tip, which persists and becomes the end of one of the filaments.
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Fig. 4. Contour evolution of an initial 1: 0.25 ellipse with a prescribed differential rotation, (4.1c);
(a) u =0, Table Ila; (b) 4 = 0.002, Table IIb; (c) curvature vs arc length, # = 0, Table Ila; (d) curvature
vs arc length, 4 = 0.002, Table IIb. The @, *, and + in Figs. 4b and 4d show corresponding locations.
(Note, the ordinate for curvature is a geometric scale: +1%, +22, +£3°.... The arc length is zero at ® and
increases in a counterclockwise direction.)

The magnitude of x at * increases monotonically because the tip radius is decreasing.
The maximum of x at + results from the differential rotation and eventually
decreases in time because of regularization. Note, that these extrema are properly
resolved by the node-adjustment algorithm.

5. DISCUSSION

We have presented continuum equations for dispersive and dissipative tangential
regularization of the motion of one contour. For the latter we have shown a
correspondence for short times with the two-dimensional linear diffusion equation,
w,=vAw. To obtain a more accurate correspondence at longer times will require a
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multicontour model. The nature of the mutual interactions between contours is
governed both by the advective X, and dissipative parts of the real evolutionary
process. For example, Overman and Zabusky [22] have related the steepening of the
“backside” of ion-density clouds to the overtaking and approach of contours. A
proper normal direction regularization procedure will yield dynamical eguations for
the intercontour separation distance that results from a competition between an
“approach” velocity due to %, and a “separation” velocity due to u Vw. This is
analogous to the steep negative gradients that arise in solutions of the one-
dimensional Burgers’ equation (1.1) that result from a competition between uu, and

Vi, .

APPENDIX A: CORRESPONDENCE OF TANGENTIAL REGULARIZATION
AND 2D DIFFUSION

We shall now compare tangential regularization of a contour dynamical algorithm
without convection

(x’y)tzﬂ(xss’yss)’ (x’y)e Rz’ (AI)

to a two-dimensional dissipative motion
w,=vdw, (x,y) E R (A.2)
For (A.1) the initial contour I' is

Fo=1{(ey)|y=¢ccosmx}, 0O<e<l, £m=0(1), (A3)

and the corresponding initial condition for (A.2) is w(x, y, 0) = w,(x, y), where

wolx, y)=1 for y< T,

(A4)
=0 for y>Tr,.
If we replace (x,,, y,,) in (A.1) by x(—sin ¢, cos ¢), then (A.1) becomes
(x’ y)l = lu[(xo yuu - yoxov)/(xczf + yi)z](_yo’ xa)’ (A‘S)

where we have used (2.3) and (2.6) and ¢ parametrizes the contour.
We perform a perturbation analysis in the variables £ = mo and r = m?’t, where

x(Z,y=Z/m+exV 4+ 3D ..,
A6
WE, 1) = ey 4 62D 4 (A.6)
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and
x"(Z,0)=0 for n>1,
(A7)
y"(Z,0)=cosmx for n=1,
=0 for n>2.
The first- and second-order evolution operators are
m W _ )
x-; = 0’ yt - ,Uy )
2) 1/2,,(1) ,(1) 2) f:) (A.8)
X = —ume Yy Yyyo Vi =MVszs
where we have made repeated use of x"’ = 0. Solving, we obtain
x=0— &*msin2mao)(1 — e~ *"")/4 + O(c?),
and
y = ee 4™ cos mo + O(g?).
Omitting terms O(¢*?) or higher, we obtain
x=0, y=c¢ce “™ cosmx. (A9)

The solution of (A.2) with (A.4) can be written as

w(x, y, t) = (dnve) ™! jmofoo 0 —[(x— 52+ (y—m2/4vt] déd
s W l)= vt) w(&, n, 0) exp n
— 00 — 0

-1 i —(x—{)%/4vt *ecosmi —(y—m¥duet
= (47vt) dée dne ,
[s @)

- — o0

or

1 St —(x—D)?¥/4vt ceosm dn e~ —m/4vt A.10
w(x, y, £) =5 + (47vt) dée ne . (A.10)
fe @)

- y

We now seek a correspondence between the two solutions. Since the dissipation
process in (A.2) instantaneously smooths w, everywhere, a comparison is not unique.
To compare the lowest-order contour dynamical solution (A.9), we choose a line
J(x, t) defined by w(x,y,t)=1, or

0= FOO dé e~ XD/t rmsml dn e F-m/avt, (A.11)
— 00 y

that is, a line at the original half-magnitude level. The second integral of (A.11) can
be written as
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+ecosmf - 2
J dn e~ O — (mp)\/? erf(g)
5

=(d)"(g—(g'/3)+0(g"),  (A12)

where g = (4vt) ~"*(—¥ + & cos m¢). We now assume that vt is sufficiently large so
that

gl= (@) "Y(F—ecosmx)* < 1. (A.13)
The integral over the leading term in (A.11) yields
¥ = ee~"™" cos mx, (A.14)

which agrees with (A.9) if g =v. Thus, to first order the tangential regularization
procedure agrees with two-dimensional dissipation. Note that the preceeding
statement is derived under the assumptions that the comparison is made at w = 1.

APPENDIX B: CONTOUR PARAMETERIZATION AND APPROXIMATION

In this apendix we describe how to obtain an analytical representation of the
contour I' passing through N nodes in the plane {x;,y;| 1 <j< N}. To parameterize
the contour, we first calculate the straight-line distance between adjacent nodes
Aly= (g0 = %)" + (§01—,)")'"%. We use the set of points {/;, x(};)} and {I;, y(I;)}
to obtain the cubic spline representation I = {x({), y({}| 0 < /< P,}, which passes
through the original nodes. The tilde indicates that the parameterization is the
straight-line segments and P, is the corresponding perimeter.

Second, we calculate the arc length along T between adjacent nodes, or

as;= [ (@O + @Oy ®.1)

=4

This integral is evaluated using an adaptive quadrature routine based on Simpson’s
rule [23]. In all our numerical results the relative error is 10~° and the absolute error
10~*, although quite often the error in perimeter and area is much smaller.

Finally, with the arc length calculated by (B.1) we use the set of points {(s;, x(s;)}
and {s;,y(s;)} to obtain two periodic cubic spline representations of the contour
I'= {(x(s), y(s) | 0 < s < P,}. This is the parameterization used in all our calculations.
For example, we can calculate the tangent angle ¢ and curvature k for any s by

tan ¢(s) = y'(s)/x’'(s), (B.2)
and

K(s) = x'(s)y"(s) — x"(s) ' (s), (B.3)
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where

x'(s) =dx(s)/ds.

The area, 4 = — [y dx, is calculated by discretizing the contour integral and again
using the adaptive quadrature routine.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research under contracts N00014-77-C-0520 and
NO00013-78-C-0074 (Task NR 062-583) and by the Naval Research Laboratory under contracts
N00014-82-C-2003 and N00014-82-C-2030.

Note added in proof. With reference to the discussion following Eq. (1.3), J. Marsden has called our
attention to the work of V. I. Yudovich (“Nonstationary flow of an ideal incompressible fluid,” Zh.
Vychisl. Mat. i Mat. Fiz. 3 (1963), 1032-1066) which shows that the two-dimensional Euler equations
with initially piecewise-constant distributions of vorticity are a well-posed problem.
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